
www.manaraa.com

Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2019-07-01

Ultra Low Latency Visual Servoing for High Speed Object Tracking Ultra Low Latency Visual Servoing for High Speed Object Tracking

Using Multi Focal Length Camera Arrays Using Multi Focal Length Camera Arrays

Alexander Steven McCown
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
McCown, Alexander Steven, "Ultra Low Latency Visual Servoing for High Speed Object Tracking Using
Multi Focal Length Camera Arrays" (2019). Theses and Dissertations. 7582.
https://scholarsarchive.byu.edu/etd/7582

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F7582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarsarchive.byu.edu%2Fetd%2F7582&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/7582?utm_source=scholarsarchive.byu.edu%2Fetd%2F7582&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

Ultra Low Latency Visual Servoing for High Speed Object Tracking Using

Multi Focal Length Camera Arrays

Alexander Steven McCown

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Dah Jye Lee, Chair
Randal W. Beard

Michael J. Wirthlin

Department of Electrical and Computer Engineering

Brigham Young University

Copyright c© 2019 Alexander Steven McCown

All Rights Reserved

www.manaraa.com

ABSTRACT

Ultra Low Latency Visual Servoing for High Speed Object Tracking Using
Multi Focal Length Camera Arrays

Alexander Steven McCown
Department of Electrical and Computer Engineering, BYU

Master of Science

In high speed applications of visual servoing, latency from the recognition algorithm can
cause significant degradation of in response time. Hardware acceleration allows for recognition
algorithms to be applied directly during the raster scan from the image sensor, thereby removing
virtually all video processing latency. This paper examines one such method, along with an anal-
ysis of design decisions made to optimize for use during high speed airborne object tracking tests
for the US military. Designing test equipment for defense use involves working around unique
challenges that arise from having many details being deemed classified or highly sensitive infor-
mation. Designing tracking system without knowing any exact numbers for speeds, mass, distance
or nature of the objects being tracked requires a flexible control system that can be easily tuned
after installation. To further improve accuracy and allow rapid tuning to a yet undisclosed set of
parameters, a machine learning powered auto-tuner is developed and implemented as a control
loop optimizer.

Keywords: visual servoing, low-latency object tracking, FPGA accelerated vision

www.manaraa.com

ACKNOWLEDGMENTS

I would first like to thank Steve Jensen and Paul Nyholm at Lawrence Livermore National

Laboratories, for funding this project in its entirety: none of this would have been possible without

them being so generous in sponsoring this research. I am very grateful for them and all of the

additional help they provided along the way.

I would like to express my sincerest gratitude for my graduate advisor, Dr. D.J. Lee, for the

continuous support and immensely valuable guidance on this project and through my University

education. A special thanks is also due to Sam Fuller, Matthew Heydorn and Taylor Simons, for

countless times digging through ideas with me and sharing priceless insights.

I would also like to thank my wife, Lucy, and my daughter Catherine, for their unfailing

support throughout and for giving me the inspiration to put forth my best in all things.

www.manaraa.com

TABLE OF CONTENTS

List of Tables . vi

List of Figures . vii

Chapter 1 Introduction . 1
1.1 Statement of Problem . 1
1.2 Background . 2
1.3 Definition of Terms . 3
1.4 Literature Survey . 3
1.5 Description of Remaining Chapters . 5

Chapter 2 Vision Background Information . 7
2.1 Colorspaces . 7

2.1.1 RGB Colorspace . 7
2.1.2 HSV Colorspace . 8
2.1.3 YUV/YCbCr Colorspace . 10

Chapter 3 Hardware Selection . 12
3.1 Camera Sensor . 12
3.2 Gimbal . 13
3.3 FPGA Boards . 15

Chapter 4 Hardware Connections and Setup . 17
4.1 Gimbal Mount . 17
4.2 Camera Connection . 17
4.3 Control Line Inputs . 19

Chapter 5 Vision Algorithm Design . 21
5.1 Colorspace Conversion . 21
5.2 Binarization . 22
5.3 Recognition Algorithm . 23
5.4 Image Pre-Processing . 26

Chapter 6 System Design . 31
6.1 System Overview . 31
6.2 FPGA Design Overview . 31

6.2.1 Vision Recognition System . 34
6.2.2 Control System . 34

Chapter 7 Automated Testing System . 39
7.1 Design and Fabrication of Testing System . 39
7.2 Test Patterns . 39

iv

www.manaraa.com

7.2.1 Circles Test Pattern . 40
7.2.2 Figure Eight Test Pattern . 40
7.2.3 Sharp Corners Test Pattern . 40
7.2.4 Impact Test Pattern . 40

7.3 Remote Control . 41

Chapter 8 Machine Learning Powered Automated Tuning 42
8.1 Automated Tuning System Design . 43
8.2 Simulated Annealing . 43
8.3 Auto-Tuning Results . 44

8.3.1 Figure Eight Test Pattern . 45
8.3.2 Circles Test Pattern . 45
8.3.3 Sharp Corners Test Pattern . 46
8.3.4 Impact Test Pattern . 47

Chapter 9 Performance Comparison . 48
9.1 Frame Rate Comparison . 48

9.1.1 Hardware Acceleration of BLOB Detection for Image Processing 48
9.1.2 FPGA-Based Architecture for Direct Visual Control Robotic Systems . . . 49

Chapter 10 Additional Applications and Future Works 51
10.1 Additional Applications . 51
10.2 Future Improvements to the System . 52

Chapter 11 Conclusion . 54

References . 55

v

www.manaraa.com

LIST OF TABLES

6.1 Overall Resource Utilization Table . 32
6.2 Overall Resource Utilization Table - No Frame Buffer 33
6.3 Top Module Resource Utilization Table . 34
6.4 Vision Recognition System Resource Utilization Table 35
6.5 Control System Resource Utilization Table . 36

8.1 Improvements and Results Achieved on the Figure Eights Test Pattern 45
8.2 Improvements and Results Achieved on the Circles Test Pattern 46
8.3 Improvements and Results Achieved on the Corners Test Pattern 46
8.4 Improvements and Results Achieved on the Impact Test Pattern 47

9.1 FPGA Accelerated Blob Detection Frame Rate Comparison of Traditional Blob De-
tection Implementations to the Algorithm
Presented in this Thesis . 49

vi

www.manaraa.com

LIST OF FIGURES

2.1 HSV Cylinder . 9
2.2 CbCr (UV) Plane . 11

3.1 The OV5642 Camera . 13
3.2 The MōVI XL High-Powered Gimbal . 14
3.3 Digilent Genesys 2 . 15
3.4 Numato Styx . 16

4.1 Custom MōVI XL Mounting Plate . 18
4.2 Custom Mounting Plate Attached to MōVI XL . 18
4.3 Camera FPGA Mount . 19
4.4 Camera FPGA Mounted On Gimbal . 20
4.5 Com Port Locations . 20

5.1 CV Algorithm Visualization . 25
5.2 BRAM Line Buffer Design . 30

6.1 High Level Block Diagram . 32
6.2 Block Diagram of FPGA Design . 33
6.3 Block Diagram of Computer Vision Recognition System Design 35
6.4 Block Diagram of Control System Design . 36

8.1 Simulated Annealing Flowchart . 44

10.1 PixelLight Smart Headlamp . 52
10.2 PixelLight System Demonstration . 52

vii

www.manaraa.com

CHAPTER 1. INTRODUCTION

1.1 Statement of Problem

The Flight Test Group at Lawrence Livermore National Laboratories is in charge of col-

lecting data on high speed tests of rapidly moving airborne objects. This data is both extremely

valuable, and extremely sensitive. Most of the details and virtually all numbers associated with

these objects are heavily classified. After working on the team for multiple years, the author of

this work still isn’t allowed to know any of the following: the speeds at which these objects move,

their flight paths, the exact locations at which they will be at test time, or the distance that these

objects to be tracked will be from the test equipment.

This information is classified in order to protect the secrets of some of the United States’

most critical defense systems. That being the case, with many of these numbers unavailable, a

plethora of obstacles arise in the task of accurately tracking these targets in real-time. Without

knowing the size, mass, velocity, or even distance from the vantage point, it’s impossible to model

their behavior mathematically.

Historically, these tests have been performed using multi-camera arrays built with some of

the worlds fastest high speed cameras. These cameras are often in the Phantom line from Vision

Research, and are capable of capturing over 500,000 frames per second. These cameras were

placed strategically in vicinity of the test site, and equipped with very wide angle lenses to ensure

that regardless of the exact flight path, the object to be tracked would at least be somewhere in the

frame.

The task of this project is to eliminate the need for wide angle lenses by aiming the high

speed cameras directly at the target as it flies by. This represents a massive improvement in the

caliber of data that can be recorded, as it maps the entire resolution of the high speed cameras more

tightly onto the object of interest, thereby providing the small region of interest with a much higher

resolution.

1

www.manaraa.com

Many traditional methods, such as modeling and predicting the flight path, or modeling

the target and predicting its interactions with its environment, would be far too inaccurate. One

feasible solution is to introduce a wide field of view camera, and use extremely low latency real

time object tracking as the backbone for high-performance visual servoing.

1.2 Background

Visual Servoing is the process of using visual sensor information to control robotic actua-

tors and adjust position or orientation in response. Object recognition algorithms are used to detect

an object of interest, and a control loop calculates responses and sends commands to mechanical

actuators, often to center the object in frame.

Plaguing the performance of this type of control system are two major factors: latency in

processing the visual sensor data, and latency in response of the mechanical actuation. The latter

of these two problems can be mitigated by using modern high speed camera gimbals with faster

response times and greater angular accelerations. The former is the primary focus of this work.

In many vision processing applications, large portions of the recognition algorithms are

performed in software. This means that the camera frames are read in and stored in memory where

the processor can read them at its own speed. This in turn necessitates that information from

the camera be stored in the interim, which introduces a measurable delay. Additionally, camera

interfaces are often simplified by the use of buffers, which store one or more frames internally,

so as to allow a communications chip to request data before its transmitted, thus making data

transmission more manageable. This further introduces delays, and results in the processor being

multiple frames behind events happening around it. Further compounding this issue is the fact

that many cameras and interfaces require compression, which means that the data must first be

compressed before it can be transmitted, and then uncompressed after the fact. This introduces

additional latency.

This paper explores the idea of implementing recognition algorithms in a Field-Programmable

Gate Array, or FPGA, as well as managing the capture of pixel information directly within the

FPGA itself, so as to minimize the delay between an event occurring and the start of the corre-

sponding reaction to that event. One major strength of a system with direct access to the camera

2

www.manaraa.com

sensor is that it eliminates all buffers and interface delays: the visual information is no longer

several frames behind real-time.

Another advantage is that with this type of system, the FPGA is then able to pull in visual

information and locate the object of interest very rapidly, much sooner than traditional recognition

systems allow. Implementing the control system in the same FPGA allows for output (going to the

actuators) to adjust nearly instantly after movement of the object of interest.

1.3 Definition of Terms

Visual Servoing – while not technically an English word, servoing is the process of ob-

taining and maintaining a target position or orientation. Visual servoing is doing so using feedback

from visual sensory input.

Colorspace – a method of digital representation of color and light information. Many

colorspaces are widely used, and vary greatly in their method of representing colors.

Grayscale – a pseudo colorspace, with zero information representing color. Grayscale is

exactly what it sound like: a scale representing shades of gray.

1.4 Literature Survey

From a scholarly standpoint, Visual Servoing is the concept of using visual sensor infor-

mation to control motion or orientation of robotic systems. Often a set of visual features are

extracted from the sensor data and used to extrapolate a multidimensional modeling of the envi-

ronment around the robot [1]. This representation is used to approximate the error in position and

orientation, which is then used to compute the desired action [2].

The term ”Visual Servoing” has been around for decades, and was likely first coined by

Hill and Park in 1979 [3]. Their work is distinguished as being a major break from previous

designs which essentially alternated between capturing a single image, processing it, and moving

accordingly. Hill and Park’s innovation was a more continual approach that provided a more

seamless response [3].

In recent years, much focus has been given to coordinate-based modeling, (see [2]) which

generally allows for more precision, but has the drawback of requiring more information about the

3

www.manaraa.com

system and its environment. In most cases, an interaction matrix Ls is usually required, which is

difficult to construct when information about the environment is limited.

One recent development that loosely relates to this paper is from Collewet and Marchand’s

2011 work on Photometric Visual Servoing [4], which proposed a much more generic system that

did away with all geometric modeling of the objects being tracked. This is intriguing of its own

right, and lends itself well to environments or objects that are not well modeled.

This approach produced tracking accuracy roughly one order of magnitude better than a

model based approach using SIFT feature tracking (0.001 degree error vs 0.041). This method was

also particularly effective on objects that either had sharp changes in light intensity, or were of a

different level of luminance than the image background. [4]

Another recent work that is perhaps the most similar to the vision portion of this project is

the work on FPGA based real-time object detection by Alexander Bochem, Kenneth B Kent and

Rainer Herpers [5].

In this work, the authors present an FPGA based implementation of a real-time multiple

blob tracking algorithm. They utilize a bounding box and center of mass estimates for approximat-

ing the center point of each of the blobs. By checking adjacency of each pixel that met the given

threshold, it was possible to combine blobs that had convexity’s on their upper most sides.

The thresholding performed was done simplistically, with a single value binarization thresh-

olding the brightness of a given pixel, in fact the author there states that a pixel is considered to

be relevant if its brightness value exceeds a specified threshold value [5]. However, it’s also stated

that the processing was done in RGB, which implies that some conversion is taking to transform

the RGB values into at least a gray-scale channel.

This method has several distinct advantages, such as the ability to distinguish cleanly be-

tween individual blobs and to combine together blobs that intersect at any point in the frame. One

major drawback is the processing time that these algorithms require. Using either the bounding

box or the center-of-mass methods, their algorithm could only process up to 12 frames per sec-

ond at 640x480. This is impressive given the complexity of their algorithm and the amount of

resources used, but quickly becomes prohibitive as the latency-sensitivity of a system increases.

Later work by these same authors does increase the frame rate of blob-detection to roughly 60

4

www.manaraa.com

frames per second, which will be discussed in Chapter 9. This work was tracking a white dot on a

black background.

On the front of implementing control loops in FPGA hardware, one paper that was ref-

erenced in the course of this project is the paper Design and Implementation of FPGA - digital

based PID controller [6]. This paper provides a great overview of the process of implementing

PID controllers in FPGAs.

Last but not least, the work most simliar to the overall layout of this Thesis is the work

by Aiman Alabdo, Javier Prez, Gabriel J. Garcia, Jorge Pomares, and Fernando Torres at the

University of Alicante, Spain. In their work, FPGA-based architecture for direct visual control

robotic systems [7], they developed a visual servoing system that utilized FPGA vision processing.

This system was demonstrated able to track a white dot on a solid black surface.

To accomplish this, they implemented traditional center-of-mass blob detection. Like the

Bochem, et al work, this also used only a single-channel gray-scale image.

1.5 Description of Remaining Chapters

The remainder of this Thesis will discuss in detail the work done to implement an ultra low

latency recognition algorithm and the control of the gimbal itself.

Chapter 2 provides some background information on some of the central machine vision

concepts that are utilized in this project. Chapter 3 details the hardware chosen for use in this

project, along with some discussion behind changes that were made along the way. Chapter 4

expands on this with documentation on how the hardware was connected together.

Chapter 5 provides an overview of the algorithm implemented for the vision tracking por-

tion of this project, along with a brief discussion of the merits of using this level of optimization for

hardware acceleration. Chapter 6 discusses the top level system design. Unlike Chapter 4 which

discusses the physical connections, Chapter 6 delves into the design internal to the FPGA.

Chapter 7 discusses the custom testing platform that was developed to benchmark and tune

this system. The usefulness of this testing platform is furthered by means of the machine learning

algorithm implemented to fine tune the gimbal system. This machine learning automated tuning is

discussed in Chapter 8, where results are shared for the improvement this brought over manually

tuning methods.

5

www.manaraa.com

Chapter 9 gives some performance comparisons to related works. Chapter 10 provides

some insights into future improvements on this project, as well as additional applications where

portions of this work could be implemented.

6

www.manaraa.com

CHAPTER 2. VISION BACKGROUND INFORMATION

This chapter serves as an introduction to the elements of computer vision that are pertinent

to and utilized in this project.

2.1 Colorspaces

One of the most fundamental elements in any machine vision application is the represen-

tation of the image data. There are many methods for representing image data, all of which have

their own unique strengths and drawbacks. A few of these that were either considered or utilized

in this project will be discussed here.

2.1.1 RGB Colorspace

In many instances, an image is represented in terms of the red, green, and blue light con-

tents. This representation is known as the RGB colorspace, and is the easiest to display on tele-

vision and computer monitor screens, which are generally designed to display images in the RGB

format.

Many camera sensors are designed to capture raw images in this format, often using 8 bit

representations for each of the three color components (red, green, and blue), producing 24 bits

per pixel. A major strength to this method of representation is simplicity: because the human eye

readily recognizes this format, displaying the intermediated images in this format is trivial.

The major drawback to this method is that it is incredibly luminosity sensitive. Often,

computer vision algorithms are used to look for objects of known colors, such as yellow lines on

a road, or products on a conveyor belt, which requires isolating objects of the desired color from

their surroundings. When the overall brightness in the environment cannot be directly controlled,

the RGB representation becomes very difficult to accurately distinguish between colors. This is

7

www.manaraa.com

because as the overall brightness increases, the value of each of the color component channels can

be altered drastically.

For example, supposing all color channels are integer values from 0 to 255, with 255 mean-

ing that color component is full brightness and 0 meaning that it’s absent, a naive approach to

searching for orange cones in a daylight environment might be to represent the desired color as

blue less than 10, red greater than 150 and green between 75 and 150. This breaks down when the

ambient light changes, for example in a dark environment the blue will still be less than 10 but the

red might now be only 50, and the green might need to be between 25 and 30.

Because of this property, isolating specific colors can require nonlinear estimations, which

can make the RGB colorspace very difficult to use in hardware accelerated applications.

2.1.2 HSV Colorspace

Another color space that is very commonly used in Machine Vision applications, particu-

larly when color detection is important, is known as the Hue Saturation Value, or HSV, represen-

tation.

In this representation, there are similarly three color component channels, which are often

also represented with 8 bits each. However, rather than representing light components how the

human eye sees them, this representation stores the color information very differently.

The value channel is best thought of as a grayscale representation of the image. The Hue

and saturation channels are slightly more difficult to grasp conceptually. Essentially, each pixel is

represented as being somewhere on a color wheel, with nearly colorless graytones being close to

the center, and sharper more solid colors being around the edges.

The hue and saturation are essentially polar coordinates on this color wheel. The satura-

tion component describes how far from the center, and the Hue describes which color is being

represented.

A visual depiction of the HSV colorspace can be seen in Figure 2.1, which illustrates how

the saturation and hue determine the color, regardless of the value channel. Of course, whenever

value is close to zero, all colors appear black regardless of the hue and saturation channels.

HSV has several major advantages over the RGB space discussed earlier. For one, changes

in ambient lighting will generally only affect the value Channel, leaving the saturation and hue

8

www.manaraa.com

Figure 2.1: The HSV colorspace mapped to a cylinder. [8]

unaltered. This means that in our simplistic example earlier of looking for orange cones, The

target color might be represented as having a hue between 150 and 175, a saturation above 80, and

the value channel can almost be completely ignored. Often this channel is simply threshold such

that it’s not completely dark, as black and can be represented as having any Hue and any saturation

in the HSV representation. As changes in the overall brightness in the scene will only affect the

value channel, assuming it doesn’t rail in either direction, we can generally leave the target hue

and saturation levels the same.

One major drawback to this color representation is the complexity in converting from RGB.

The equations to convert from RGB to HSV are as follows:

R′ = R/255 (2.1)

G′ = G/255 (2.2)

B′ = B/255 (2.3)

Cmax = max(R′,G′,B′) (2.4)

9

www.manaraa.com

Cmin = min(R′,G′,B′) (2.5)

∆ =Cmax−Cmin. (2.6)

Hue =


60◦× G′−B′

∆
mod 6), for Cmax = R′

60◦× B′−R′

∆
+2), for Cmax = G′

60◦× R′−G′

∆
+4), for Cmax = B′

 (2.7)

Saturation =

 0, for Cmax = 0

∆/Cmax, for Cmax 6= 0

 (2.8)

Value =Cmax (2.9)

The primary disadvantage to this method is that, as seen in Equation 2.7, calculating the hue

requires division of two non constants. As division with a non constant divisor is a very resource

intensive operation, converting to HSV is not as hardware-friendly as other approaches.

2.1.3 YUV/YCbCr Colorspace

Another alternative colorspace is the YUV Colorspace. It is worth noting here that while

YUV is technically an analog standard used in old television broadcasts, and YCrCb is a digital

approximation, much of the documentation and implementation available will use the two names

interchangeably. To avoid further confusion, this work will refer to this colorspace as YCbCr only.

The general equations for converting from RGB to YCbCr are defined by the NTSC stan-

dard:

Y = 0.299R+0.587G+0.114B (2.10)

Cb =−0.147R−0.289G+0.436B (2.11)

Cr = 0.615R−0.515G−0.100B. (2.12)

10

www.manaraa.com

Figure 2.2: The UV (or Cb Cr) plane in YCbCr colorspace shows an approximate representation
of Cb and Cr values required to produce a given color. [9]

The main advantage of this colorspace is that it maps the color information onto a plane

such that it groups similar colors into regions, identifiable by their Cb and Cr values, while be-

ing almost entirely irrespective to ambient lighting. This allows selecting specific colors to be

recognized even when the system is used in a different lighting situation.

Because this application requires hardware acceleration as well as accurate color tracking,

YCbCr was chosen for the vision recognition algorithm here.

11

www.manaraa.com

CHAPTER 3. HARDWARE SELECTION

3.1 Camera Sensor

Several sensor types were purchased and used in this project. Each had its own strengths

and shortcomings, but all were intended to be used in a parallel direct interface.

A few of these sensors were made by OmniVision. The one that was eventually chosen for

this project was the OV 5642. This sensor was chosen mainly because it is capable of outputting

at 120fps, and operates at a 3.3V logic level, making interfacing with standard FPGA GPIO very

straightforward.

The OV5642 is a 1/4 inch sensor with a max resolution of 5 megapixels (2592x1944) that

uses the OmniBSI technology. It supports high frame-rates at lower resolutions, including a QVGA

mode that is designed to run at 120 fps. The OV5642 takes an input clock between 6 - 27 MHz, and

has an onboard Phased Locked Loop (PLL) that can upscale the clock input for higher data-rates.

It provides parallel 8 bit data output, along with a pixel clock for direct synchronization.

Another strong advantage to this sensor is that it’s readily available in a convenient pack-

age that utilizes a CS-lens mount, which is one of the most common lens styles used in security

cameras. This features was a great asset, in that it allowed the use of the extensive market for CS

mount lenses used in CCTV security cameras.

This sensor also has a built-in I2C-like interface for setting register values and restarting

the chip. To maintain a truly hardware-friendly implementation, a lightweight I2C sender was

implemented in VHDL for loading pre-determined values into these registers at startup.

The configuration details of the OV5642 as required for this project can be seen in the

register values in the source code, but some notable features that were utilized are the manual

exposure and gain settings, and the configuration of the PLL to multiply the input clock by 4 for

the pixel clock.

12

www.manaraa.com

Figure 3.1: The OV5642 [10]

3.2 Gimbal

The gimbal used in this project was the MōVI XL made by Freefly Systems. Figure 3.2

shows the MVI XL gimbal mounted from the top. This gimbal supports mounting either above or

below, ie in a top-down or hanging configuration.

The MōVI XL was designed to be an extremely versatile high performance camera system,

intended to be used in professional video recording. As such, it sports impressive performance

specs, is able to accept a wide variety of control inputs, and comes with a very robust set of

mounting brackets. These brackets turned out to be an invaluable resource in adding additional

components for testing.

The MōVI XL supports full 360 ◦continuous rotation, as well as software adjustible end

stops on the tilt and roll axes. According to the specification document, the maximum rotation

rates for all three axes is 200◦per second.

While only weighing 11kg, the MōVI XL is able to swing a payload of up to 23kg, and

supports mounting in applications that are moving at up to 100mph. The MōVI XL utilizes three

large direct-drive 3-phase brushless DC motors, one for each axis of rotation, each being rated at

1300w of power.

13

www.manaraa.com

Figure 3.2: The MōVI XL High-Powered Gimbal [11]

14

www.manaraa.com

Figure 3.3: Digilent Genesys 2 Board [12]

Some of the interfaces that support input into the MōVI XL are TSU ports used for both

Timecode inputs/outputs, as well as CAN bus inputs and battery voltage sensing. There are also

auxiliary ports that support the Futaba SBUS protocol for direct control of the relative movements

of the gimbal.

The MōVI XL gimbal used in this project was provided by the funding party, the Flight

Test Group at Lawrence Livermore National Laboratories.

3.3 FPGA Boards

Similarly, several FPGA boards were used in this project. Unlike the camera sensors,

however, two were used for more than just initial testing.

Digilent Genesys 2

The first such board was the Genesis 2 made by Digilent. This board had several major ad-

vantages over the others, such as the fact that it’s built with a Kintex class FPGA and benefits from

the smaller process node, as well as a greater number of resources available internally. Another

advantage, readily apparent in Figure 3.3, is the fact that it comes with several built-in features that

are extremely useful in development and debugging, such as multiple video input and output ports,

and a row of switches and LEDs, as well as several buttons.

15

www.manaraa.com

Figure 3.4: The Numato Styx Board [13]

This board was used for initial testing of the video processing algorithm, largely due to the

appeal of those built-in video output ports. Eventually, however, it became clear that this board’s

size was too hard to justify, even given the strength in terms of FPGA fabric size.

Numato Styx

Another board that was used in this project is the Numato Styx. This board is built on one

of the 7020 series Zynq chips, leaving the potential to utilize the on-board ARM core for future

works. This board was eventually chosen due to its small form factor and how readily the camera

sensors lined up with the power, ground and GPIO pins on one of the on-board headers.

Almost too perfectly, the pins of the OV5642 lined up perfectly on one end of the P5 header

on the Styx board. Another obvious advantage to this board is the small form factor, seen in Figure

3.4, which is small thanks to the minimal amount of unnecessary hardware, such as the switches,

buttons and displays that are common among development board.

16

www.manaraa.com

CHAPTER 4. HARDWARE CONNECTIONS AND SETUP

There were many portions of this project that required unusual mounts and connections.

Many of these necessitated custom fabrication, and a few fit quite fortuitously with neighboring

portions of the system. This chapter discusses the physical setup and configuration, and a few of

the mounts and connectors that were made in the development process.

4.1 Gimbal Mount

The first step in testing the actuation of the MōVI XL was ensuring it was secured with

enough strength to counteract the massive torque of the motors. The mounting system provided

on the MōVI XL was clearly designed for space conservation rather than ease of mounting. The

bolt holes are such that the screws are tightened underneath the gimbal pointing up towards the

pan motor.

To facilitate this, a custom mounting plate was designed and milled out in the basement

of the Engineering Building, with interior bolt holes milled out to the dimensions provided in the

MōVI XL manual, and outer holes drilled to allow bolts facing downward away from the gimbal.

Figure 4.1 shows the completed product, and Figure 4.2 illustrates how the mount attaches to the

small plate on the bottom of the MōVI XL. This plate brought a drastic reduction in the difficulty

in removing the bolts that secure the MōVI XL onto the base, as access to the underside of the base

was no longer required.

4.2 Camera Connection

The connection from the camera to the FPGA took on several different styles at various

stages of the development of this system. During the initial development of the vision recognition

algorithm, which took place using the Genesys 2 board mentioned in Chapter 3, the camera was

connected to the Peripheral Module (Pmod) ports using single stranded wires. This worked fine

17

www.manaraa.com

Figure 4.1: Custom mounting plate designed for this project

Figure 4.2: Custom mounting plate bolted on to the MōVI XL.

at lower frame rates where the clock going to the OV5642, and more particularly the pixel clock

coming out of it, could be kept below 25 Mhz. Beyond this point, which was needed to utilize the

higher framerates this sensor boasts, these long wires became an issue.

Switching to the Numato Styx board brought several major advantages. Not only was this

board smaller and easier to mount on the Gimbal, but as mentioned previously, the pins lined up

perfectly where one end of the P5 header had ground and 3.3v supply lines that fit right where the

header pins coming out of the OV5642 required them. This allows the camera to plug directly into

the FPGA headers, alleviating the need for jumper wires altogether.

18

www.manaraa.com

Figure 4.3: Design render of the custom mount fitting camera and FPGA together

This kept the camera offset from the FPGA board roughly 12mm, which was alleviated with

brass stand offs. The mounting holes in both the Numato Styx board and the OV5642 breakout

board accepted standard 3.5mm stand offs, which were used to mount the two together.

With the goal of leaving the primary payload area open for the high speed cameras, the

most logical place to position the camera and FPGA pair was on top of the upper most bracket on

the MōVI XL. As no mount existed prior that could fit the FPGA and camera together, let alone

affix them onto the bracket, one was designed and 3D printed on site.

After several revisions, and improvements made to strengthen the mount and reduce flexing

under the intense acceleration that the MōVI XL is designed to produce, the final form of the

mounting bracket can be seen in Figure 4.3.

The bottom of this mount was designed such that it mates perfectly onto the holes at either

end of the top bracket on the payload area of the MōVI XL, which also served the purpose of

maintaining alignment with the gimbal arm. Figure 4.4 shows this mounted on top of the bracket

on the MōVI XL.

4.3 Control Line Inputs

The S.Bus input was chosen to be used to issue commands to the MōVI XL. S.Bus is

an inverted serial protocol invented by Futaba, and intended to be a replacement for PWM servo

control on radio controlled aircraft. This bus works by sending a packet of 25 bytes that map to 16

individual 11 bit values, each of which would traditionally be represented as a stand alone PWM

signal.

19

www.manaraa.com

Figure 4.4: Camera and FPGA together mounted in place on the MōVI XL

Figure 4.5: Com port locations on the MōVI XL

The S.Bus input on the the MōVI XL is wired internally to the Com 1 port on the control

box behind the main arm of the pan axis. As this port is located outside the main payload area, it

was necessary to run a control line through the hinges, into the Com1 input seen in Figure 4.5. In

order to minimize overall latency of the system, the S.Bus generator is implemented in the FPGA,

so a custom cable was required to connect the two.

20

www.manaraa.com

CHAPTER 5. VISION ALGORITHM DESIGN

At the core of this project is the design of the vision recognition system. For purposes of

clarity, this will be broken down into three distinct parts: the colorpsace coversion, the thresholding

/ binarization stage, and the real-time blob detection stage.

5.1 Colorspace Conversion

YCbCr is a simplified color space that allows hardware implementation to be done with

fairly low resource use. This color space is discussed in more detail in Chapter 2. The Y channel,

the luma component, is essentially a gray-scale representation of the image, while Cb and Cr are

the blue-difference and red-difference chroma values. The main advantage of this colorspace is

that it groups similar colors into regions identifiable by their Cb and Cr values, while being almost

entirely irrespective to ambient lighting. This allows selecting specific colors to be recognized

even when the system is used in a different lighting situation.

For the OV5642 sensor, the Y, Cb, and Cr channels are calculated slightly differently than

the standard YCbCr colorspace, likely due to unique aspects of the sensor due to the manufacturing

process used. In practice, this simply means that for this sensor, the YCbCr conversions require

different equations than the NTSC standard equations. In this case, the RGB to YCbCr conversion

is done using the following equations:

Y = 0.299R+0.587G+0.114B (5.1)

Cb =−0.172R−0.339G+0.511B+128 (5.2)

Cr = 0.511R−0.428G−0.083B+128. (5.3)

21

www.manaraa.com

However, since division and floating point multiplication isn’t very easy to implement in

hardware, it is very beneficial to simplify these equations by approximating the values as integers

to later be divided by a power of 2 – in this case 256, where >> is the logical bit-shift operator:

Y = (77R+150G+29B)>> 8 (5.4)

Cb = ((−43R−85G+128B)>> 8)+128 (5.5)

Cr = ((128R−107G−21B)>> 8)+128. (5.6)

Using these reduced equations above allows the conversions to be multiplication and addi-

tion/subtraction only operations, followed by a left shift to compensate for the earlier adjustment.

For example, in the first equation for Y, we see that the R channel must be multiplied by

0.299. To remove the need for decimal calculations, we can substitute in a number scaled by our

precomputed scaling factor, in this case 256. Since 0.299 X 256 = 76.54, we simply round to the

nearest whole number, which in this case is 77, which is the coefficient for R seen in Equation 5.4,

which is how this conversion is currently implemented. Then, after summing up the individual

terms, we simply shift right by 8, equivalent to performing a division by 28, thereby removing the

256 scaling factor we used earlier.

5.2 Binarization

One immediately obvious requirement for recognition of our airborne object is proper bi-

narization of the pixel data. As each pixel is read in, it must first be thresholded to produce binary

data with 1’s representing pixels that match the target and 0’s representing those that don’t.

This can be accomplished in a variety of ways, each bringing their own unique advantages

and drawbacks, and often need to be tailored to the specific application. For this project, binariza-

tion was done with direct thresholding of the Y, gray-scale, component along with a combination

of the color information stored in the Cb and Cr channels, which were similarly thresholded to

further reduce false positive pixels.

22

www.manaraa.com

After the color conversion step, see Section 5.1, the real time video stream has three chan-

nels, the Y, Cb, and Cr components, for each pixel.

Since the object to be tracked is of a known brightness and color, the binarization step is

implemented by thresholding the three channels around their target values. For this project, since

the actual objects to be tracked are sensitive information, the project sponsor, the Flight Test Group

at Lawrence Livermore National Lab, requested the demonstrations be performed with the system

tracking a colored laser.

Tracking a green laser was accomplished by thresholding the Y channel such that any pixels

with a Y below 200, or roughly 78% of the max, were ignored, and also thresholding the Cb and

Cr channels such that any pixels below 128, or roughly 50% of the max, on the Cb and Cr channels

were ignored.

As is the case in the YCbCr color plane in Figure 2.2, these color components are often

represented as being signed decimals ranging between -1 and 1. In this case, values on Cb and Cr

that are below 128 represent strictly negative values when scaled between -1 and 1. As can be seen

in Figure 2.2, the region on the colorplane where both the Cb and the Cr channels are less than 0

is the green portion of the colorspace.

5.3 Recognition Algorithm

The recognition algorithm used in this project is implemented in real time during the raster

scan as pixel data comes directly from the image sensor. This algorithm was aggressively opti-

mized for hardware acceleration.

The algorithm can be thought of as a loose variant of the image histogram representation.

Instead of using tonal or pixel values as the independent axis, the line and column numbers them-

selves are used as the bins.

Center Detection

As each pixel is read in, it must first be thresholded to produce binary data with 1s repre-

senting pixels that match the target and 0s representing those that dont. Each time a 1 is found,

two counters are incremented: one counter is the bin representing the line number currently being

23

www.manaraa.com

read, and the other is the one that represents the column number, ie the current pixels location in

that line.

As each line is completed, the value in that line’s bin will be equal to the number of non-

zero values in that line. Similarly, at the conclusion of each frame, the column bins will hold counts

which will be equal to the number of non-zero values in their respective columns.

Assuming proper binarization, discussed in Section 5.2, these bins will then hold values

equal to, or at least very close to, zero everywhere except in the rows and columns where our

object of interest is in the current frame. Then the column with the highest count is selected as

the approximate x coordinate of our object, and the row with the highest count is selected as the y

coordinate.

This can be thought of as a heavily optimized hardware accelerated version of a projection

onto the column and row axis.

Locating these maximums then reveals the location of the center of the blob. To further

reduce the latency and optimize the algorithm for hardware, this locating the maximum phase

was also implemented during the raster scan. As each pixel is read in, and the counts for the

current rows bin updated, that bin’s value is simultaneously checked against a stored value – the

maximum row value previously encountered in the frame. The same is done for the column bin,

which similarly is checked and updated if the current pixel results in a count that is greater than

the maximum value encountered thus far.

Tracking of two more values was required: An index of the greatest-so-far values for the

row, and also one for the column. These were updated every time the greatest-so-far values were,

and they hold the current values for the row or column at the time the update was called.

Figure 5.1 shows an example of this, with a very low binning resolution done here for

clarity. Here the black represents the pixels that were below the threshold, and were therefore

treated as 0’s, and the green represents the pixels that met all the threshold limits and were treated

as 1’s. As can be seen, the column and row bins are left with 0’s everywhere except where the

object is. Assuming the object is roughly round, the bin with the greatest count will always be the

one at the center of the blob.

For the column bins in this example, the greatest value occurs at the 7th column from the

left, which is where the object has its tallest point, and that bin is left with a value of 3 . Similarly,

24

www.manaraa.com

Figure 5.1: CV Algorithm Visualization

the row bins show that the greatest value occurs where the object has its widest point in the frame,

which happens at row 4, which is left with a value of 5.

Naturally, in cases intended for more than illustration purposes, the number of bins is set to

match the resolution of the image coming in. This results in a very much finer binning arrangement,

and produces a very accurate location of the center of a blob.

Strengths and Drawbacks of the Method

It is worth noting that a drawback of this method is that the accuracy will be somewhat

lower than traditional blob detection in cases of partial occlusion – where it will center on only the

visible portion of the object – and in cases where the object is not round.

25

www.manaraa.com

For example, in the case of a perfect square, perfectly oriented with sides parallel to the

sides of the image frame. The bins for all columns in which the object reside would then hold the

same value – ie, the height of the object. Likewise all the bins for all rows in which the object

resides would be left with the same value – the width of the object.

As this algorithm has been discussed up to this point, it would choose the last of the equal

values as the point to track, which in the case of the square would be the bottom right corner. This

results in the primary weakness of this method: dealing with duplicate maximum values.

One solution that was implemented to mitigate this rare but potential issue involves storing

a second location point associated with the current maximum. This then allows the two location

points to represent the first and the last point at which the maximum was hit, and the two are then

averaged. This averaging does not required any division, as the divisor would be 2, requiring only

a single bit shift on the result of the adder.

This method has several substantial advantages over traditional blob detection. It does all

the processing of any given pixels data once, unlike many methods that must iterate through all

detected points in the entire frame and retrace paths to identify convexities. This means that the

algorithm can be made without even a single line buffer, which represents a massive improvement

over the traditional method of holding the entire image in memory before beginning processing.

It also maintains the advantages of the base algorithm, in that it requires no complex operations,

such as the division used to locate the center of a blob in software, an operation which is both slow

and very expensive in hardware applications. All of these significant strengths allow this method

to be implemented with extremely low latency.

As demonstrated and discussed in more detail in Chapter 9, this method can run a full

order of magnitude faster than even a hardware accelerated implementation of the traditional blob

detection.

5.4 Image Pre-Processing

In order for the location detection to be accurate, it’s important to ensure the pixel data is

laid out in such a way that the object of interest can be clearly distinguished from any background.

This section discusses some additional tricks that make recognition more accurate. Some of the

pre-processing techniques that not only lend themselves well to hardware accelerated applications,

26

www.manaraa.com

but are also very effective at reducing background noise are the Gaussian Blur, morphological

erosion.

Both of these methods utilize the kernel concept in Computer Vision, where a small 2D

matrix, generally 3x3, is applied as a sliding window over the entire image. As the kernel passes

over the image, the value in each index of the kernel is multiplied by the corresponding pixel value

in the image.

Gaussian Blur

The Gaussian Blur can be achieved in real time by utilizing a 3x3 kernel as described

earlier. The equation for this kernel is as follows:

S = 1/16


1 2 1

2 4 2

1 2 1

 . (5.7)

Where S represents the output value for the current pixel, and the values of the items in

the matrix are each multiplied by the original pixel values in coresponding locations in the current

position of the sliding window in the input image.

For example, suppose the current region of the image is represented as the following matrix:


A B C

D E F

G H I

 . (5.8)

The products to be calculated would be:


1 ·A 2 ·B 1 ·C

2 ·D 4 ·E 2 ·F

1 ·G 2 ·H 1 · I

 . (5.9)

These products are then summed, producing the sum of products value:

1 ·A+2 ·B+1 ·C+2 ·D+4 ·E +2 ·F +1 ·G+2 ·H +1 · I. (5.10)

27

www.manaraa.com

The result of this is then divided by the scaling correction factor, which in the case of a

3x3 kernel is 1/16, as seen in Equation 5.7. As in all cases where division by a constant where the

constant divisor is a power of 2, the logical way to implement this in hardware is to perform a bit

shift, in this case by 4 bits, which takes zero time in hardware as the wires can be directly mapped.

The result of this scaling reduction is then used as the pixel value in the blurred image at

the location of the center entry in the current location of the 3x3 sliding window. Ie, in our example

above in Equation 5.8, the output pixel would be processed as being at the same location as E, that

is, one less than the current row and one less than the current column.

It’s worth noting that the Gaussian Blur can actually be performed on either the pre-

thresholded image or on the post-thresholded binary image. In the case of the former, it will

produce the same type of colored image that then needs to be binarized. In the case of the latter,

the values must either be truncated or else thresholded again, as the coefficients in the Gaussian

Blur matrix will produce values other than 0 and 1.

Erosion

The erosion kernel operates slightly differently, and instead of multiplying each item in the

sliding window by some coefficient, the erosion operation works by performing a logical AND on

all of the bits in the sliding window together. Thus, the center pixel in the output is a 1 if and only

if all 9 of the pixels in the binarized image are all 1’s.

Since the erosion must be performed on the post-binarized image, we can assume all the

values in our current stage of the image are either 0 or 1, and we can treat the erosion operation as

a matrix fully populated with 1’s:


1 1 1

1 1 1

1 1 1

 . (5.11)

Because we know all the pixel values will be single bit binary values, we can perform the

operation as if it were a sum of products on the current sliding window, which again is represented

as:

28

www.manaraa.com


A B C

D E F

G H I

 . (5.12)

Therefore, the result of this sum of products will be:

SoP = 1 ·A+1 ·B+1 ·C+1 ·D+1 ·E +1 ·F +1 ·G+1 ·H +1 · I. (5.13)

This value is checked against the max, which is n ·m, where n and m are the dimensions of

the kernel. In the case of this 3x3 kernel, the result is that the current pixel is a 1 if and only if the

SoP is equal to 9.

Implementation in Hardware

One thing to note is that the addition of either erosion or Gaussian Blur kernels requires the

use of two line buffers, resulting a delay equal to the time required to receive two full lines. For the

hardware implementation, these 3x3 kernels are applied to a sliding window composed of the the

past three pixels in the current line, the last line, and the line before that. In order to accomplish

this, the past three lines must be stored in linebuffers, so as to allow the kernel processing module

access to those values.

This is done by using 3 three-pixel-wide shift registers, and two one-line wide linebuffers

in Block RAMs. Each time a new pixel comes in, it’s loaded into the first three-pixel shift register.

The pixel exiting the last one in the shift register is pushed into a single-line line buffer of size

width−3. The output of this linebuffer then goes into the second three-pixel shift register, which

represents the three pixels on the previous line. The output of that shift register is then fed into the

second line buffer, also of size width−3, which itself feeds into the final shift register.

Storing the large portions of the line that are not required for the iteration in line buffers,

instead of shift registers, allows that major portion of the line buffers to be synthesized as Block

RAMs, which alleviates the vast majority of the resource requirements of the line buffers. Only the

9 pixels that are required for the current iteration will be stored in the shift registers, which allow

immediate access.

29

www.manaraa.com

Figure 5.2: BRAM Line Buffer Design

Figure 5.2 illustrates how these shift registers hand off to the BRAMs, which then hand

back to the shift registers representing the previous line. Two of these BRAM’s are required, along

with three sets of shift registers.

30

www.manaraa.com

CHAPTER 6. SYSTEM DESIGN

This chapter discusses how the system is connected together, and provides an overview of

the implementation internal to the FPGA. Resource utilization is also included with each of the

lower level component descriptions. The percentage utilization numbers presented in this section

are based on the Zynq 7020 Series FPGA. This exact part number is xc7z020-clg484-1.

6.1 System Overview

Figure 6.1 shows the top level overview of the system, as well as the connections between

the physical components. Two optional pieces are the Video Output and the Control and Debug

I/O. The video output lines are constantly driven, but the pins can be left un-terminated for reduced

weight and complexity. The Control and Debug I/O is a standard UART pair, where the TX outputs

a data packet each time a frame is completed, and the RX line is used to tune various parameters

inside the system. One virtue of this setup is that it allows for remote tuning of the thresholds and

gains the recognition and control loop modules.

6.2 FPGA Design Overview

Figure 6.2 shows the top level overview of the portions of the system internal to the FPGA,

as well as the connections both between the various internal modules and between those modules

and the exterior devices. Several major components themselves contain many smaller modules,

such as the Control System and the Computer Vision Recognition System, whose block diagrams

will follow.

Table 6.1 shows the overall resource utilization of the entire system, as described in Figure

6.2. Note that the high BRAM usage is due almost entirely to the frame buffer stage, which is used

by the video output generator. These blocks are not necessary for operation, and can be left out

entirely to further reduce resource usage, as shown in Table 6.2.

31

www.manaraa.com

Figure 6.1: High Level Overview of the System Connections.

Table 6.1: Overall resource use of the entire system,
including the optional frame buffer and output video

generator – not required in operation

Resource Utilization Available Utilization %
LUT 1529 53200 2.87
LUTRAM 203 17400 1.17
FF 886 106400 0.83
BRAM 113 140 80.71
DSP 13 220 5.91
IO 35 200 17.5
BUFG 4 32 12.5
MMCM 1 4 25

32

www.manaraa.com

Figure 6.2: High Level Block Diagram of Connections Between FPGA Modules.

Table 6.2: Overall resource use of the entire
system without the option frame buffer

Resource Utilization Available Utilization %
LUT 817 53200 1.54
LUTRAM 201 17400 1.16
FF 738 106400 0.69
BRAM 0.5 140 0.36
DSP 8 220 3.64
IO 35 200 17.50
BUFG 4 32 12.50
MMCM 1 4 25.00

33

www.manaraa.com

Table 6.3: Overall resource use of the additional top level modules in the
system, including the optional frame buffer and output video

generator – not required in operation

Resource Utilization
Camera Config Frame Buffer Video Output Gen

FLOP LATCH 112 14 115
LUT 105 372 210
CARRY 5 0 23
BMEM 1 114 0
MUXFX 0 130 0
MULT 0 0 4

6.2.1 Vision Recognition System

The Computer Vision Recognition System is composed of a thresholding stage that is dis-

cussed in detail in Section 5.2, and a recognition stage that processes the post-thresholded binary

pixel data and produces target coordinates based on the same.

The inputs to the computer vision block are the raw camera data outputs from the OV5642

sensor, which are the 8 bits of pixel data, along with a pixel clock, a vertical synchronization

pulse and a horizontal reference signal. The remaining lines from the OV5642 are managed by the

Control System.

The vertical synchronization pulse is used to determine the end of the frame, and to coor-

dinate when to reset all counters and flags for the next incoming frame. The pixel data is passed

immediately into the thresholding stage described in Section 5.2, where it it’s converted into the

YCbCr colorspace and thresholded to remove any background data and highlight the object to be

tracked.

6.2.2 Control System

The Control System itself is composed of a Control Loop, a UART receiver, and a state

machine for decoding UART messages and parsing their values into the appropriate places. The

primary reason for laying out the control system in this manner was the flexibility born by sep-

arating the control loop in its entirety. Keeping this module completely isolated from the rest of

the design allows other control loops to be swapped in at will. For example, supposing on another

34

www.manaraa.com

Table 6.4: Overall resource use of the Vision Recognition
System

Resource Utilization
CV System Thresholding Detection

FLOP LATCH 113 16 97
LUT 172 7 165
MUXFX 110 0 110
CARRY 10 0 10
MULT 1 0 1
DMEM 200 0 200

Figure 6.3: Block Diagram of Computer Vision Recognition System Design

gimbal system, a precise model of the gimbal can be approximated. A state space control system

would then become very desirable, and the design could be altered to accept it with little to no

modification.

Control Loop

The Control Loop currently used in this project is a Proportional-Integral-Derivative (PID)

Control loop. PID controllers operate by tracking the current error value, as well as some repre-

sentation of the previous error values, and use this information to calculate the appropriate control

response.

35

www.manaraa.com

Table 6.5: Overall resource use of the Control System

Resource Utilization
Control System Control Loop Input Decoder UART Rx

FLOP LATCH 298 67 174 35
LUT 352 256 36 38
CARRY 42 38 0 4
MULT 8 8 0 0

Figure 6.4: Block Diagram of Control System Design

The conventional equation for a PID controller is given in Equation 6.1, where K p is the

proportional gain coefficient, Ti is the integral time constant, and Td is the derivative time constant.

e is the error, that is, the difference between desired position and actual position, and u is the output

of the control loop.

u(t) = Kp{e(r)+
1
Ti

∫ t

0
e(τ)dτ +Td

de(τ)
dτ
}. (6.1)

36

www.manaraa.com

Discretizing Equation 6.1 gives:

u(k) = Kp{e(k)+
T
Ti

k−1

∑
i=0

e(i)+
Td

T
[e(k)− e(k−1)]}, (6.2)

where T is the sampling interval.

Unfortunately, this equation is still rather difficult to implement in hardware. This is due in

part to the summation that took place of the integral in Equation 6.1. Hardware accelerated appli-

cations often use what is known as the recursive PID algorithm [6]. The recursive PID algorithm

is as follows:

u(k−1) = Kp{e(k−1)+
T
Ti

k−2

∑
i=0

e(i)+
Td

T
[e(k−1)− e(k−2)]. (6.3)

If the last control output, that is u(k− 1), is known, then the relationship to the current

control output then becomes dependant only on the errors from the last three cycles:

u(k)−u(k−1) = Kp{e(k)− e(k−1)+
T
Ti

e(k−1)+
TD

T
[e(k)−2e(k−1)− e(k−2)]. (6.4)

As Equation 6.5 shows, this removes the summation almost entirely, and allows computa-

tion of the control output based only on the previous output and the errors from the current cycle

as well as the two cycles prior. Solving for the desired output u(k) yields:

u(k) = u(k−1)+Kp{e(k)− e(k−1)+
T
Ti

e(k−1)+
TD

T
[e(k)−2e(k−1)− e(k−2)]. (6.5)

It’s worth noting that the two apparent divisions are not divisions at all, but are really just

multiplications by a constant. In the first case, T
Ti

is simply the sampling interval divided by the

integral time constant, neither of which are variable at runtime. The latter case is similar, TD
T is

the derivative time constant divided by the sampling interval, which again is division involving

constants for both divisor and dividend. This allows their quotient to be pre-computed and stored

as a constant fixed point number. Then, as each sample window arrives, the appropriate error

37

www.manaraa.com

value is simply scaled by the constant pre-computed number, which can be done with bit shifts and

additions – very hardware friendly operations.

38

www.manaraa.com

CHAPTER 7. AUTOMATED TESTING SYSTEM

As this system is unique in the world, measuring its performance required using an auto-

mated testing system to predictably and repeatably provide stimuli. In order to meet this need, a

custom actuation platform was designed and built to test the object tracking system. This platform

will not necessarily be part of the final rendition of this project, but its usefulness in collecting data

has been proven repeatedly over the course of this work, and as such it’s only fitting to include a

brief discussion of it in the same.

7.1 Design and Fabrication of Testing System

As the closest feasible approximation to the objects to be tracked, a high powered colored

laser pointer was selected as a sample target. A high powered green laser with adjustable focus

was purchased to serve this role. This provided similarities in that it was a bright object of a known

color. In order to generate repeatable test patterns, a two axis actuator was constructed to allow

precise control of the direction in which the laser points.

As controlling the pan and tilt axes of the test platform required precise position control,

high speed digital servos were the logical choice. The servos chosen are high speed metal-geared

servos capable of accelerating from a standstill up to angular speeds of over 600 degrees per sec-

ond, in under 0.1 seconds.

7.2 Test Patterns

In order to provide several data points to compare response times on, several test patterns

were implemented, each designed to test the requested specification of travel speeds around 180

degrees per second. Each of these test patterns reaches those speeds in different circumstances, but

all reach it at a minimum of one point in their pattern.

39

www.manaraa.com

7.2.1 Circles Test Pattern

The Circles test pattern moves the laser point in a single large circle at a constant speed.

The circle is roughly 90 degrees in diameter, as measured from the perspective of the tracking

gimbal. In order to achieve the requested speed of 180 degrees per second, one rotation of this

circle pattern is done in roughly 1.5 seconds. This was computed by approximating the overall

path distance around the circle as 90π , because the diameter of the field of view of this circle is 90

degrees. Dividing this by the requested speed, 180 degrees per second, gives roughly 1.57 seconds.

7.2.2 Figure Eight Test Pattern

The Figure Eight test pattern introduces slightly more complex motions, by moving the

tilt servo at twice the rate of the pan servo. This creates a sideways figure eight, and fits where it

touches all the edges of the camera sensor’s field of view. The width of the figure eight is roughly

110 degrees, and the height is approximately 80, ensuring that much of the figure eight would not

be visible from a non tracking point of view.

7.2.3 Sharp Corners Test Pattern

The Sharp Corners test pattern introduces what is believed to be a harder situation than this

system will be subject to in its final application, but one that provides interesting data nonetheless.

This pattern moves the laser as quickly as possible from one corner to the next, in the following

order: top right, bottom left, bottom right, top left. Because the servo’s are capable of 600 degrees

per second, and the MōVI XL specifications state 200 degrees per second, this creates situations

where the pan motion is being pushed as fast as it will respond, as well as times when both pan and

tilt are simultaneously being tasked with speed requirements that greatly exceed both the required

numbers and the hardware specifications of the gimbal.

7.2.4 Impact Test Pattern

This test pattern is designed to be as close an approximation as is feasible with information

that is not classified. This pattern starts out in the top right corner, and then moves down to the

40

www.manaraa.com

bottom left at a steadily increasing rate of speed, until at the end the servos are moving at full

power.

7.3 Remote Control

In order to coordinate this test platform’s actions remotely, a wireless message service was

setup to send and parse commands to and from this assembly. An ESP8266 board was selected to

facilitate this connection. The ESP8266 is a lightweight low-power WiFi-enabled micro-controller

that supports most internet protocols. One such protocol that’s designed to fit well the needs of

this application is Message-Queue Telemetry Transport (MQTT). This protocol operates by having

a single host device acting as a ’broker’ and other satellite devices that ’subscribe’ to pre-defined

topics. The broker registers internally which devices have requested notifications on a given topic,

and each time a message comes to the broker under the tag of that topic, the message is relayed to

all devices that are subscribed to it.

By utilizing this type of messaging service, starting and stopping any given test pattern can

be done remotely, and confirmation is sent as a reply when the pattern has completed. This proved

to be invaluable in collecting data during these test pattern runs.

To allow further synchronization for data measurements, the gimbal controls were also

modified to take advantage of this wireless protocol. By mounting a second ESP8266 board on the

gimbal, and tying a pair of UART lines into the FPGA’s input controller discussed in Chapter 6, it

became possible to remotely activate and tune the gimbal in real time. This allowed for things like

power settings, control loop parameters, and even machine vision thresholds to be adjusted while

the gimbal was in motion. By coordinating both the gimbal and the test platform on this wireless

protocol, it became possible to start a test pattern, and log in real time the measured position of the

target in the frame.

41

www.manaraa.com

CHAPTER 8. MACHINE LEARNING POWERED AUTOMATED TUNING

Often with traditional control loops, tuning is done using the Ziegler Nichols, or Z-N, tun-

ing method. The goal of this method is to minimize response time to a step function, while still

preventing large overshoot. This Z-N method is often used, even currently, as it’s frequently found

to produce the best performance when compared to other tuning methods [14]. Many improve-

ments have been made on this method, such as the Modified Ziegler Nichols method [15], which

seeks to further minimize the lag and overshoot response to a step function input.

However, as discovered analytically in this work, it turns out that tuning for a clean re-

sponse to a step function input does not produce the most accurate solution in many cases. This

is particularly evident in applications where minimizing raw error is more essential than a smooth

response curve, such as this work’s task where the primary goal is maintaining the object of interest

center in frame.

To further tighten the raw error between the object to be tracked and the center of frame,

thereby allowing an even tighter field of view on the high speed payload cameras, a machine

learning automation script was written to allow for rapid custom-tuning of the control loop. This

machine learning optimization enables quick and accurate tuning of the control loop parameters

to fit more precisely a particular test pattern. This means that future applications can utilize this

machine learning tool to custom tailor the control system to meet the exact needs of that partic-

ular application. Not only does this reduce the imperfections in the tuning, but it does so fully

automatically without requiring any intimate knowledge of the target’s path, or even of the gimbal

system itself. This is particularly useful in this work, where the classified information regarding

these details is hidden from this projects perspective.

42

www.manaraa.com

8.1 Automated Tuning System Design

As the gimbal controls discussed in Chapter 7 were already wireless, it made sense to take

advantage of this already implemented feature in building the automated tuning system.

The automated tuning script operates by first subscribing to the topics where the gimbal is

publishing current error data, which is sent over once per frame. This data is then processed to

calculate the average error across the entire runtime of the given test pattern.

The script begins by sending the command to the automated testing platform to start a

particular test sequence – whichever one is currently being optimized for. Then several counting

arrays are initialized: arrays that record the current error on both the pan and tilt axes as the test

pattern runs. After the test pattern is finished, as marked by a response from the automated test

system, these arrays are averaged to find the mean error value, as well as the maximum instan-

taneous error. Then the target value-to-be-minimized, generally the average error, is saved as the

current best value. Then the machine learning phase begins.

8.2 Simulated Annealing

The machine learning technique that was applied here is known as Simulated Annealing.

This algorithm derives its name from a process in metallurgy that improves the ductility of a metal

by heating it to a predetermined temperature, generally just above the recrystallization point. The

annealing process then involves controlling the cooldown in such as way as to facilitate the move-

ment of atoms into a state of greater equilibrium. As the atoms randomly move, slowly reducing the

temperature results in a larger number of atoms that assume a nearly uniform low-energy state. [16]

The simulated annealing algorithm mimics this process by generating a random adjustment

to the current design, and testing against the current design’s performance. If the randomly gener-

ated design performs better, it is accepted as the new current design and the process repeats. When

the randomly generated design under-performs the current design, a second random number is gen-

erated and compared against the Boltzmann probability factor, which is determined by Equation

8.1 :

P = exp(
−∆E
KbT

). (8.1)

43

www.manaraa.com

Figure 8.1: Conceptual Flowchart of the Simulated Annealing Optimization Step [17]

Where P is the probability of the inferior design step being accepted, ∆E is the change

in performance or energy states between the current and the randomly generated designs, kb is

the Boltzmann constant, and T is a variable called the temperature of the system at the current

iteration. As the process iterates, the temperature is slowly reduced, thus lowering the probability

that a worse design gets accepted.

Having a high temperature in the early iterations allows this machine learning technique

to work its way out of local minima. Reducing the temperature later on ensures that solution

works its way toward a solution that has better performance than any neighbors within the random

displacement window.

Figure 8.1 shows the decision making process of the simulated annealing algorithm.

8.3 Auto-Tuning Results

The results of this machine learning custom tuning turned out even more impressive than

expected. On all of the test patterns, the simulated annealing algorithm was able to produce signif-

icantly lower average errors than the traditional tuning methods. These numbers are reported both

in pixels and degrees of error.

44

www.manaraa.com

Table 8.1: Improvements and Results Achieved on the Figure Eights Test Pattern

Manually Tuned for Step Response After 50 Iterations of SA
Tilt Error Pixels 25.624 11.989
Pan Error Pixels 25.477 10.483
Tilt Error Degrees 7.207 3.372
Pan Error Degrees 7.165 2.948
Pan Kp 5 13
Pan Kd 20 17
Tilt Kp 9 21
Tilt Kd 25 26

8.3.1 Figure Eight Test Pattern

Table 8.1 shows the quite drastic improvement attained on the Figure Eight test pattern.

Notice how the average error was reduced by over 50%, 58% on the pan and 53% on the tilt axes,

respectively. This brought the average error from roughly 7 degrees down to roughly 3 degrees.

Because the goal of this system is to allow the high-speed payload cameras to use a very

narrow field of view lens, these results are extremely promising. For example, going from a 7

degree field of view down to a 3 degree field of view lens means that over 4 times the number

of pixels are on the object of interest – twice the resolution-on-target in both the rows and the

columns.

8.3.2 Circles Test Pattern

Table 8.2 shows the same data collected for the Circles test pattern. This test pattern also

showed massive improvement using the simulated annealing automated tuning, with the pan error

boasting an incredible 68% reduction over the manual tuning numbers. The tilt accuracy also saw

a large improvement, with a 36% reduction in average error. To put that into perspective, the

manual tuning’s 9.6 degree error on the pan axis would have required a field of view of nearly

10 degrees to capture a reasonable amount of the test pattern motion; with the machine learning

improvements, a field of view of only 3.02 degrees would be required to capture the same amount

of the target object’s path. This means that over 9 times as many pixels would be located on the

object of interest, while still maintaining the object in frame as accurately as before.

45

www.manaraa.com

Table 8.2: Improvements and Results Achieved on the Circles Test Pattern

Manually Tuned for Step Response After 50 Iterations of SA
Tilt Error Pixels 13.44 8.582
Pan Error Pixels 34.344 10.742
Tilt Error Degrees 3.780 2.414
Pan Error Degrees 9.659 3.021
Pan Kp 5 19
Pan Kd 20 16
Tilt Kp 9 17
Tilt Kd 25 15

Table 8.3: Improvements and Results Achieved on the Corners Test Pattern

Manually Tuned for Step Response After 50 Iterations of SA
Tilt Error Pixels 14.264 12.855
Pan Error Pixels 35.376 34.385
Tilt Error Degrees 4.012 3.615
Pan Error Degrees 9.950 9.671
Pan Kp 5 6
Pan Kd 20 21
Tilt Kp 9 9
Tilt Kd 25 21

8.3.3 Sharp Corners Test Pattern

Table 8.3 shows the same data collected on the Sharp Corners test pattern. These results

are not nearly as impressive, with only a 9.8% improvement in the tilt average error and even less,

3%, in the pan error. As much as these numbers pale in comparison to the improvements made

in the other test patterns, these still represent measurable improvements over the traditional tuning

method. Why this particular pattern is more difficult for the simulated annealing to optimize for is

beyond the scope of this work, but it’s likely that since this test pattern pushes the servos to their

max, the mechanical motion of the MōVI XL is already the bottleneck.

46

www.manaraa.com

Table 8.4: Improvements and Results Achieved on the Impact Test Pattern

Manually Tuned for Step Response After 50 Iterations of SA
Tilt Error Pixels 12.064 6.737
Pan Error Pixels 31.521 19.301
Titlt Error Degrees 3.393 1.895
Pan Error Degrees 8.865 5.428
Pan Kp 5 9
Pan Kd 20 14
Tilt Kp 9 14
Tilt Kd 25 21

8.3.4 Impact Test Pattern

As mentioned in Chapter 7, this test pattern is believed to be the most accurate to the real

world application this project is designed for. Table 8.4 shows the numerical improvement achieved

by the simulated annealing algorithm on the Impact test pattern.

The average error in the pan axis saw a 38% reduction by using the simulated annealing

to fine tune the control loop for this test pattern. Even more impressive, the average tilt error was

brought down over 44% to a minuscule 1.9 degrees average error.

47

www.manaraa.com

CHAPTER 9. PERFORMANCE COMPARISON

This machine vision algorithm implemented in this Thesis is extremely well suited for

hardware acceleration, and is capable of running at impressive speeds. In order to determine the

maximum speeds at which the algorithm itself can operate, the vision processing algorithm was

synthesized and implemented expecting various clock rates and resolutions.

In all numbers reported here, timing is being met for all metrics, setup time, hold time and

pulse width requirements. For reference, these synthesis runs were done using the Xilinx Vivado

Default strategies for Synthesis and Implementation, with the target device being the Zynq-7000

series System-on-Chip.

9.1 Frame Rate Comparison

In high speed real-time processing, one important metric is the maximum frame rate at

which incoming video can be processed. The algorithm presented here was demonstrated both

in simulation and in an implemented Vivado design to run with a pixel clock rate of 666Mhz.

This allows a maximum frame rate of roughly 2170 frames per second, assuming the resolution of

640x480 used in this Thesis. While the camera sensor used in this project is not capable of speeds

that high, this means that the algorithm implemented in this Thesis could support frame rates over

2100 fps if paired with a faster camera.

9.1.1 Hardware Acceleration of BLOB Detection for Image Processing

A more traditional approach to blob detection is demonstrated by Bochem, Herpers and

Kent in their work Hardware Acceleration of BLOB Detection for Image Processing [18]. In this

work, they implement blob detection in FPGA hardware, and provide results for their design’s

speed and frame rates.

48

www.manaraa.com

Table 9.1: FPGA Accelerated Blob Detection Frame Rate Comparison
of Traditional Blob Detection Implementations to the Algorithm

Presented in this Thesis

Resolution Frames Per Second
x y Bochem, et al [18] Alabdo, et al [7] This Algorithm

640 480 61.39 - 2170.14
800 800 47.34 - 1041.67

1024 768 28.9 - 847.71
752 582 - 340 1521.7

Table 9.1 shows the results from [18] at the three resolutions reported in their paper, side-

by-side with the results of this algorithm synthesized for the same resolutions. As can clearly

be seen, this algorithm is shown running at approximately 30 times faster than traditional blob

detection.

9.1.2 FPGA-Based Architecture for Direct Visual Control Robotic Systems

One of the related works that most closely matched this Thesis is the work by Aiman

Alabdo, Javier Prez, Gabriel J. Garcia, Jorge Pomares, and Fernando Torres at the University of

Alicante, Spain. In their work, FPGA-based architecture for direct visual control robotic systems

[7], they developed a visual servoing system that utilized FPGA vision processing. This system

was demonstrated able to track a white dot on a solid black surface.

To accomplish this, they implemented traditional center-of-mass blob detection, which took

only a single-channel gray-scale image. They performed all the vision processing and actuator

control inside the FPGA, which was a 7-series Kintex chip, XC7K325T-2. They were able to

achieve a framerate of 340 frames per second on a resolution of 752582.

As can be seen in Table 9.1, this is also substantially slower than the algorithm presented in

this Thesis, despite the fact that Alabdo, et al [7] leveraged a newer and larger chip, the Kintex-7

XC7K325T-2. The Alabdo, et al design used over 80,000 LUTs, which simply would not fit on the

Zynq chip used in this Thesis, which only has 53,000 LUTs available.

It is also worth noting that this Thesis implemented color tracking, using YCbCr to track

a colored dot over a wide variety of backgrounds, whereas Alabdo, et al. only implemented gray-

scale tracking of a white object on a solid black background. Despite this simplified task and

49

www.manaraa.com

larger FPGA, the traditional method of blob detection is still only able to achieve less than 1/4 the

frame-rates of the algorithm implemented in this Thesis.

Unfortunately, their accuracy was only reported in pixels, which makes it difficult to com-

pare without knowing the exact dimensions of their field of view. However, they do state that they

were able to achieve an average error of only 3.1 pixels on their test pattern, when it moved with

a max speed of 2 radians per second, or approximately 114 degrees per second [7]. This is an

impressive number, but without knowing their field of view, it’s impossible to compare accurately

to this Thesis method, particularly as this project requires much higher speeds, and utilizes test

patterns running at 230 degrees per second.

50

www.manaraa.com

CHAPTER 10. ADDITIONAL APPLICATIONS AND FUTURE WORKS

10.1 Additional Applications

The low latency blob detection and vision processing algorithm developed in this work lend

themselves well to a variety of embedded applications. Here are a few potential applications that

have connections with the Robotic Vision Laboratory at Brigham Young University.

The PixelLight is an electronically controllable headlight system that leverages multiple

LED’s strategically located such that each illuminates a vertical bar on the road ahead. Then, as

oncoming traffic is detected, the lights can intelligently turn off on the one specific slot where

the oncoming vehicle is located in order to reduce glare and improve visibility for the oncoming

drivers.

Thus far, the system uses a camera sensor placed elsewhere on the front of the car, and has

a separate embedded processor to determine the location of oncoming traffic in the frame, which is

then passed to the headlights to blank the corresponding regions. Figure 10.1 shows the PixelLight

Smart Headlamp System, and Figure 10.2 shows the system in operation, illustrating how a small

vertical bar would be blanked to avoid blinding the oncoming driver.

The blob detection algorithm presented in this work would fit very well in such an appli-

cation. Using this work’s vision processing system here would allow the camera to be relocated

to inside the headlamp assembly, which not only minimizes connections to be tracked, but also

makes the entire system fit into a single product. Similarly, as the FPGA would then be doing all

the processing, there’s no longer any need for the remote processor. This means that the headlamp

assembly could be manufactured as a single unit, built to meet the dimensions of stock headlamps

that came with mass produced vehicles. The product could then be sold as a drop-in replacement

for standard headlamps.

51

www.manaraa.com

Figure 10.1: The PixelLight Smart Headlamp

Figure 10.2: The PixelLight Smart Headlamp in Operation

This would drastically reduce the amount of work required to retrofit an existing vehicle

with the PixelLight smart headlamps. And as an added benefit, because the cameras would be

mounted together with the lights, this would also remove any need for post-installation alignment.

10.2 Future Improvements to the System

One logical course for future extensions of this project could be to employ cameras with

support for higher frame rates, which the Machine Vision algorithm would readily support. This

would bring a reduction in overall latency, that would make the control system even more accurate.

52

www.manaraa.com

Another potential future improvement would be to use mechanical hardware with faster

actuation and lower response time. Speeding up the response time of the mechanical components

could further improve the accuracy of the overall system. A similar improvement would be seen

by designing a custom gimbal system where the motor controllers could be directly manipulated

by the FPGA, as this would reduce any lag in the current system that stems from time the MōVI

XL takes in processing the S.Bus commands.

If even lower latency is required, then entire gimbal-and-high speed camera could be re-

placed with a fixed ultra high-resolution camera sensor with electronically selectable real-time

region of interest cropping. The FPGA could then process a low resolution frame to locate the

object and request a small region around it at higher resolution.

53

www.manaraa.com

CHAPTER 11. CONCLUSION

This work details the design and construction of an ultra low latency object tracking system.

Using a high powered gimbal like the MōVI XL paired with a low latency FPGA vision processing

algorithm allows for extremely short response time and very accurate object tracking.

Using hardware friendly recursive PID loop algorithms can produce very rapid response

times, and substantial further improvements can be achieved by leveraging machine learning tech-

niques like simulated annealing. Perhaps the most surprising finding of this work was that the

margin of error can be cut in half in some applications by utilizing machine learning automated

tuning.

This work centered around a real time blob detection algorithm, which was not only achieved

theoretically, but also fully implemented in hardware. This blob detection was employed as the

backbone for an ultra low latency tracking platform, which was demonstrated capable of tightly

tracking an object moving at over 180 degrees per second.

54

www.manaraa.com

REFERENCES

[1] K. Hashimoto, Visual Servoing, ser. World Scientific series in robotics and automated
systems. World Scientific, 1993. [Online]. Available: https://books.google.com/books?id=
uMOmoFOPLxUC 3

[2] F. Chaumette and S. Hutchinson, “Visual servo control. i. basic approaches,” IEEE Robotics
Automation Magazine, vol. 13, no. 4, pp. 82–90, Dec 2006. 3

[3] H. J. and W. Park, “Real time control of a robot with a mobile camera,” Proc. 9th ISIR, pp.
233–246, 1979. 3

[4] C. Collewet and E. Marchand, “Photometric visual servoing,” IEEE Transactions on
Robotics, vol. 27, no. 4, pp. 828–834, 2011, cited By :67. [Online]. Available:
www.scopus.com 4

[5] A. Bochem, R. Herpers, and K. B. Kent, “Fpga based real-time object detection approach
with validation of precision and performance,” 22nd IEEE International Symposium on Rapid
System Prototyping, 2011. 4

[6] M. Kocur, S. Kozak, and B. Dvorscak, “Design and implementation of fpga - digital based
pid controller,” in Proceedings of the 2014 15th International Carpathian Control Conference
(ICCC), May 2014, pp. 233–236. 5, 37

[7] A. Alabdo, J. Prez, G. Garcia, J. Pomares, and F. Torres, “Fpga-based architecture for direct
visual control robotic systems,” Mechatronics, 39, 2016. 5, 49, 50

[8] Wikipedia, the free encyclopedia, “Hsv color solid cylinder,” 2019, [Online; accessed
April 29, 2019, By SharkDderivative work SharkD]. [Online]. Available: https:
//commons.wikimedia.org/w/index.php?curid=9801673 9

[9] Wikipedia, the free encyclopedia, By Tonyle - Own work, “Example of u-v color plane, y
value = 0.5, represented within rgb color gamut,” 2019, [Online; accessed April 29, 2019].
[Online]. Available: https://commons.wikimedia.org/w/index.php?curid=6977944 11

[10] RobotShop, “Ov5642,” 2019, [Online; accessed May 7, 2019]. [Online]. Available:
https://www.robotshop.com/en/arducam-5-mp-camera-module-ov5642-cs-mount-lens.
html?gclid=EAIaIQobChMI6aHhvZCK4gIVBtVkCh01pQNOEAQYAiABEgK8C D BwE
13

[11] BH Photo Video, “Mvi xl,” 2019, [Online; accessed May 7, 2019]. [Online]. Available:
https://static.bhphoto.com/images/images750x750/1491240145000 1330379.jpg 14

[12] Trenz Electronics, “Genesys 2,” 2019, [Online; accessed May 7, 2019]. [Online]. Available:
https://shop.trenz-electronic.de/media/image/1c/3a/e7/26992 0.jpg 15

55

https://books.google.com/books?id=uMOmoFOPLxUC
https://books.google.com/books?id=uMOmoFOPLxUC
www.scopus.com
https://commons.wikimedia.org/w/index.php?curid=9801673
https://commons.wikimedia.org/w/index.php?curid=9801673
https://commons.wikimedia.org/w/index.php?curid=6977944
https://www.robotshop.com/en/arducam-5-mp-camera-module-ov5642-cs-mount-lens.html?gclid=EAIaIQobChMI6aHhvZCK4gIVBtVkCh01pQNOEAQYAiABEgK8C_D_BwE
https://www.robotshop.com/en/arducam-5-mp-camera-module-ov5642-cs-mount-lens.html?gclid=EAIaIQobChMI6aHhvZCK4gIVBtVkCh01pQNOEAQYAiABEgK8C_D_BwE
https://static.bhphoto.com/images/images750x750/1491240145000_1330379.jpg
https://shop.trenz-electronic.de/media/image/1c/3a/e7/26992_0.jpg

www.manaraa.com

[13] Numato Website, “Styx,” 2019, [Online; accessed April 29, 2019]. [Online]. Available:
https://numato.com/docs/styx-zynq-module/ 16

[14] A. A. Azman, M. H. F. Rahiman, N. N. Mohammad, M. H. Marzaki, M. N. Taib, and M. F.
Ali, “Modeling and comparative study of pid ziegler nichols (zn) and cohen-coon (cc) tuning
method for multi-tube aluminum sulphate water filter (mtas),” in 2017 IEEE 2nd Interna-
tional Conference on Automatic Control and Intelligent Systems (I2CACIS), Oct 2017, pp.
25–30. 42

[15] P. M. Meshram and R. G. Kanojiya, “Tuning of pid controller using ziegler-nichols method
for speed control of dc motor,” in IEEE-International Conference On Advances In Engineer-
ing, Science And Management (ICAESM -2012), March 2012, pp. 117–122. 42

[16] E. Britannica, “Annealing,” 2011, [Online; accessed May 16, 2019; published September 25,
2011]. [Online]. Available: https://www.britannica.com/science/annealing-heat-treatment 43

[17] J. D. Hedengren, “Design optimization: Simulated annealing tutorial,” 2019, [Online;
accessed May 16, 2019]. [Online]. Available: http://apmonitor.com/me575/index.php/Main/
SimulatedAnnealing 44

[18] A. Bochem, R. Herpers, and K. B. Kent, “Hardware acceleration of blob detection for image
processing,” in 2010 Third International Conference on Advances in Circuits, Electronics
and Micro-electronics, July 2010, pp. 28–33. 48, 49

56

https://numato.com/docs/styx-zynq-module/
https://www.britannica.com/science/annealing-heat-treatment
http://apmonitor.com/me575/index.php/Main/SimulatedAnnealing
http://apmonitor.com/me575/index.php/Main/SimulatedAnnealing

	Ultra Low Latency Visual Servoing for High Speed Object Tracking Using Multi Focal Length Camera Arrays
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Statement of Problem
	1.2 Background
	1.3 Definition of Terms
	1.4 Literature Survey
	1.5 Description of Remaining Chapters

	Chapter 2 Vision Background Information
	2.1 Colorspaces
	2.1.1 RGB Colorspace
	2.1.2 HSV Colorspace
	2.1.3 YUV/YCbCr Colorspace

	Chapter 3 Hardware Selection
	3.1 Camera Sensor
	3.2 Gimbal
	3.3 FPGA Boards

	Chapter 4 Hardware Connections and Setup
	4.1 Gimbal Mount
	4.2 Camera Connection
	4.3 Control Line Inputs

	Chapter 5 Vision Algorithm Design
	5.1 Colorspace Conversion
	5.2 Binarization
	5.3 Recognition Algorithm
	5.4 Image Pre-Processing

	Chapter 6 System Design
	6.1 System Overview
	6.2 FPGA Design Overview
	6.2.1 Vision Recognition System
	6.2.2 Control System

	Chapter 7 Automated Testing System
	7.1 Design and Fabrication of Testing System
	7.2 Test Patterns
	7.2.1 Circles Test Pattern
	7.2.2 Figure Eight Test Pattern
	7.2.3 Sharp Corners Test Pattern
	7.2.4 Impact Test Pattern

	7.3 Remote Control

	Chapter 8 Machine Learning Powered Automated Tuning
	8.1 Automated Tuning System Design
	8.2 Simulated Annealing
	8.3 Auto-Tuning Results
	8.3.1 Figure Eight Test Pattern
	8.3.2 Circles Test Pattern
	8.3.3 Sharp Corners Test Pattern
	8.3.4 Impact Test Pattern

	Chapter 9 Performance Comparison
	9.1 Frame Rate Comparison
	9.1.1 Hardware Acceleration of BLOB Detection for Image Processing
	9.1.2 FPGA-Based Architecture for Direct Visual Control Robotic Systems

	Chapter 10 Additional Applications and Future Works
	10.1 Additional Applications
	10.2 Future Improvements to the System

	Chapter 11 Conclusion
	References

